Bibliography

[BM06]

Bastiaan J Braams and David E Manolopoulos. On the short-time limit of ring polymer molecular dynamics. J. Chem. Phys., 125:124105, 2006.

[BDP07]

G Bussi, D Donadio, and M Parrinello. Canonical sampling through velocity rescaling. J. Chem. Phys., 126:14101, 2007.

[CV93]

Jianshu Cao and Gregory A Voth. A new perspective on quantum time correlation functions. J. Chem. Phys., 99:10070–10073, 1993.

[CV94]

Jianshu Cao and Gregory A Voth. The formulation of quantum statistical mechanics based on the Feynman path centroid density. IV. Algorithms for centroid molecular dynamics. J. Chem. Phys., 101:6168–6183, 1994.

[Cer10]

M. Ceriotti. GLE4MD. http://gle4md.org, 2010.

[CBRM11]

Michele Ceriotti, Guy A. R. Brain, Oliver Riordan, and David E. Manolopoulos. The inefficiency of re-weighted sampling and the curse of system size in high order path integration. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468:2–17, 2011.

[CBP09a]

Michele Ceriotti, Giovanni Bussi, and Michele Parrinello. Langevin Equation with Colored Noise for Constant-Temperature Molecular Dynamics Simulations. Phys. Rev. Lett., 102:020601, 2009.

[CBP09b]

Michele Ceriotti, Giovanni Bussi, and Michele Parrinello. Nuclear Quantum Effects in Solids Using a Colored-Noise Thermostat. Phys. Rev. Lett., 103:30603, 2009.

[CBP10]

Michele Ceriotti, Giovanni Bussi, and Michele Parrinello. Colored-Noise Thermostats à la Carte. J. Chem. Theory Comput., 6:1170–1180, 2010.

[CM12]

Michele Ceriotti and David E Manolopoulos. Efficient First-Principles Calculation of the Quantum Kinetic Energy and Momentum Distribution of Nuclei. Phys. Rev. Lett., 109:100604, 2012.

[CMP11]

Michele Ceriotti, David E Manolopoulos, and Michele Parrinello. Accelerating the convergence of path integral dynamics with a generalized Langevin equation. J. Chem. Phys., 134:84104, 2011.

[CM13]

Michele Ceriotti and Thomas E Markland. Efficient methods and practical guidelines for simulating isotope effects. J. Chem. Phys., 138:014112, 2013.

[CMM14]

Michele Ceriotti, Joshua More, and David E. Manolopoulos. i-PI: A Python interface for ab initio path integral molecular dynamics simulations. Comp. Phys. Comm., 185:1019–1026, 2014.

[CP10]

Michele Ceriotti and Michele Parrinello. The δ-thermostat: selective normal-modes excitation by colored-noise Langevin dynamics. Procedia Computer Science, 1:1607–1614, 2010.

[CPMM10]

Michele Ceriotti, Michele Parrinello, Thomas E Markland, and David E Manolopoulos. Efficient stochastic thermostatting of path integral molecular dynamics. J. Chem. Phys., 133:124104, 2010.

[CBC16]

Bingqing Cheng, Jörg Behler, and Michele Ceriotti. Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link Between Experiments. J. Phys. Chem. Letters, 7:2210–2215, 2016.

[CC14]

Bingqing Cheng and Michele Ceriotti. Direct path integral estimators for isotope fractionation ratios. J. Chem. Phys., 141:244112, 2014.

[Chi97]

Siu A. Chin. Symplectic integrators from composite operator factorizations. Phys. Lett. A, 226:344–348, 1997.

[CM04]

I R Craig and D E Manolopoulos. Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics. J. Chem. Phys., 121:3368, 2004.

[FH64]

R P Feynman and A R Hibbs. Quantum Mechanics and Path Integrals. McGraw-Hill, New York, 1964.

[HMMM13]

Scott Habershon, David E Manolopoulos, Thomas E Markland, and Thomas F Miller. Ring-polymer molecular dynamics: quantum effects in chemical dynamics from classical trajectories in an extended phase space. Annual review of physical chemistry, 64:387–413, 2013.

[HWC18]

Mahdi Hijazi, David M. D.M. Wilkins, and Michele Ceriotti. Fast-forward Langevin dynamics with momentum flips. J. Chem. Phys., 148:184109, 2018.

[JV01]

Seogjoo Soonmin Jang and Gregory A Voth. Applications of higher order composite factorization schemes in imaginary time path integral simulations. J. Chem. Phys., 115:7832–7842, 2001.

[KBC16]

Venkat Kapil, Jörg Behler, and Michele Ceriotti. High order path integrals made easy. J. Chem. Phys., 145:234103, 2016.

[KCC18]

Venkat Kapil, Alice Cuzzocrea, and Michele Ceriotti. Anisotropy of the Proton Momentum Distribution in Water. J. Phys. Chem. B, 122:6048–6054, 2018.

[KRM+19]

Venkat Kapil, Mariana Rossi, Ondrej Marsalek, Riccardo Petraglia, Yair Litman, Thomas Spura, Bingqing Cheng, Alice Cuzzocrea, Robert H Meißner, David M Wilkins, Benjamin A Helfrecht, Przemysław Juda, Sébastien P Bienvenue, Wei Fang, Jan Kessler, Igor Poltavsky, Steven Vandenbrande, Jelle Wieme, Clemence Corminboeuf, Thomas D Kühne, David E Manolopoulos, Thomas E Markland, Jeremy O Richardson, Alexandre Tkatchenko, Gareth A Tribello, Veronique Van Speybroeck, and Michele Ceriotti. i-PI 2.0: A universal force engine for advanced molecular simulations. Computer Physics Communications, 236:214–223, March 2019.

[KVC16]

Venkat Kapil, Joost VandeVondele, and Michele Ceriotti. Accurate molecular dynamics and nuclear quantum effects at low cost by multiple steps in real and imaginary time: Using density functional theory to accelerate wavefunction methods. J. Chem. Phys., 144:054111, 2016.

[LMCP10]

Lin Lin, Joseph A Morrone, Roberto Car, and Michele Parrinello. Displaced Path Integral Formulation for the Momentum Distribution of Quantum Particles. Phys. Rev. Lett., 105:110602, 2010.

[LDCR18]

Yair Litman, Davide Donadio, Michele Ceriotti, and Mariana Rossi. Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature. J. Chem. Phys., 148:102320, 2018.

[LAM+13]

Jian Liu, Richard S. Andino, Christina M. Miller, Xin Chen, David M. Wilkins, Michele Ceriotti, and David E. Manolopoulos. A Surface-Specific Isotope Effect in Mixtures of Light and Heavy Water. J. Phys. Chem. C, 117:2944–2951, 2013.

[MM08a]

Thomas E Markland and David E Manolopoulos. A refined ring polymer contraction scheme for systems with electrostatic interactions. Chem. Phys. Lett., 464:256, 2008.

[MM08b]

Thomas E Markland and David E Manolopoulos. An efficient ring polymer contraction scheme for imaginary time path integral simulations. J. Chem. Phys., 129:024105, 2008.

[MHT99]

Glenn J Martyna, Adam Hughes, and Mark E Tuckerman. Molecular dynamics algorithms for path integrals at constant pressure. J. Chem. Phys., 110:3275, 1999.

[MM05]

Thomas F Miller and David E Manolopoulos. Quantum diffusion in liquid para-hydrogen from ring-polymer molecular dynamics. J. Chem. Phys., 122:184503, 2005.

[PNicolaiW+16]

Riccardo Petraglia, Adrien Nicolaï, M.D. Matthew D. Wodrich, Michele Ceriotti, and C. Corminboeuf. Beyond static structures: Putting forth REMD as a tool to solve problems in computational organic chemistry. J. Comp. Chem., 37:83–92, 2016.

[PT16]

Igor Poltavsky and Alexandre Tkatchenko. Modeling quantum nuclei with perturbed path integral molecular dynamics. Chemical Science, 7:1368–1372, 2016.

[PerezT11]

Alejandro Pérez and Mark E Tuckerman. Improving the convergence of closed and open path integral molecular dynamics via higher order Trotter factorization schemes. J. Chem. Phys., 135:064104, 2011.

[RCM14]

Mariana Rossi, Michele Ceriotti, and David E Manolopoulos. How to remove the spurious resonances from ring polymer molecular dynamics. J. Chem. Phys., 140:234116, 2014.

[RGC16]

Mariana Rossi, Piero Gasparotto, and Michele Ceriotti. Anharmonic and Quantum Fluctuations in Molecular Crystals: A First-Principles Study of the Stability of Paracetamol. Phys. Rev. Lett., 117:115702, 2016.

[RKC18]

Mariana Rossi, Venkat Kapil, and Michele Ceriotti. Fine tuning classical and quantum molecular dynamics using a generalized Langevin equation. J. Chem. Phys., 148:102301, 2018.

[SG78]

Isaac F. Silvera and Victor V. Goldman. The isotropic intermolecular potential for H2 and D2 in the solid and gas phases. J. Chem. Phys., 69:4209, 1978.

[Suz95]

M Suzuki. Hybrid exponential product formulas for unbounded operators with possible applications to Monte Carlo simulations. Phys. Lett. A, 201:425–428, 1995.

[Yam05]

Takeshi M Yamamoto. Path-integral virial estimator based on the scaling of fluctuation coordinates: Application to quantum clusters with fourth-order propagators. J. Chem. Phys., 123:104101, 2005.